

PROJECT ECHO®: TELE-MENTORING TO MANAGE IMMUNE-RELATED ADVERSE EVENTS IN PATIENTS RECEIVING CANCER IMMUNOTHERAPIES

Gastroenterology Toxicities with Immune Checkpoint Inhibitors

WELCOME AND INTRODUCTIONS

Steering Committee/Faculty:

Jocelyn E. Mohs, PharmD, BCOP

Director of Pharmacy
Sanford Medical Center, Fargo
Fargo, North
Jocelyn.Mohs@SanfordHealth.org

Ryan M. Weight, DO, MS

Medical Director
The Melanoma And Skin Cancer Institute
Denver, CO
ryan.weight@theskincancerinstitute.com

Laura Wood, RN, MSN, OCN

Laura S. Wood RN, MSN, OCN Oncology Nurse Specialist Medina, Ohio woodls401@gmail.com

Today's Speaker:

Yinghong (Mimi) Wang, MD, PhD, MSc

Director of Inflammatory Bowel Disorder
Director of Fecal Microbiota Transplantation
Chair of MD Anderson Institutional IOTOX working group
Associate Professor
Department of Gastroenterology, Hepatology & Nutrition
The University of Texas MD Anderson Cancer Center, Houston, TX
ywang59@mdanderson.org

FACULTY DISCLOSURES

Jocelyn E. Mohs, PharmD, BCOP has no relevant financial relationships.

Yinghong Wang, MD, PhD is a consultant with Sorriso, MabQuest, Sanarentero, AzurRx, and received research grant from Gateway, Adopt A Scientist, Moonshot, HESI, Sabin Fellowship.

Ryan M. Weight, DO, MS is a consultant and speaker with Immunocore and Castle Biosciences INC and is a consultant for Novartis and Pfizer.

Laura S. Wood, RN, MSN, OCN is a speaker for BMS, Eisai, EMD Serono, Exelixis, Merck and Pfizer.

LEARNING OBJECTIVES

At the end of this educational program, participants should be able to:

- Apply evidence-based practices for the monitoring and management of immune-related adverse events (irAEs) in patients receiving cancer immunotherapies
- Improve coordination and communication with non-oncology specialists and with patients/caregivers to manage irAEs in patients receiving cancer immunotherapies
- Review strategies for providing equitable care for underserved patients receiving cancer immunotherapies

SUPPORT STATEMENT

This activity is supported by an educational grant from BMS.

Compared to patients without GI toxicity, the development of GI irAEs is associated with:

- A. Worse overall and progression-free survival, the more severe GI irAE, the worse survival.
- B. Improved overall and progression-free survival, the more severe GI irAE, the better survival.
- C. No difference in survival

Which of the following statements is correct regarding the evaluation of ICI colitis?

- A. If the stool infection for diarrhea work up is positive for infection, this is most likely the cause of symptom, which should be adequately treated and steroid should be avoided in this situation.
- B. For ICI related colitis, endoscopy should be avoided given the higher risk of perforation.
- C. Early endoscopy evaluation and the colitis severity measurement on endoscopy will provide more accurate guidance on the treatment strategy.
- D. Abdominal imaging will provide high yield for patients with new onset of diarrhea symptom after ICI treatment and should be considered as part of the routine evaluation.

Which of the following endoscopic features would be most concerning for more severe disease?

- A. Ulceration
- B. Congestion
- C. Normal findings on gross examination
- D. Loss of vasculature

What do you need to know about immune checkpoint inhibitors (ICI) re-challenge in patients with ICI colitis?

- A. Since steroid is required for the index colitis event, ICI re-challenge should not be considered.
- B. The recurrence rate of colitis is low, ICI re-challenge can always be considered if clinically indicated at any time.
- C. Since CTLA-4 agent is found to be associated with higher level of GI toxicity, rechallenge should be only limited to PD-1/PD-L1 agent.
- D. Despite recurrence rate of 35% on ICI re-challenge, once the colitis is under adequate treatment with remission, ICI can still be restarted, preferably with PD-1/L1 monotherapy

Goals of irAE Management

- Provide effective treatment early to control irAEs and avoid complications
- Minimize irAE recurrence
- Facilitate ICI resumption or continuation of other cancer treatment

MANAGEMENT OF GASTROINTESTINAL IMMUNE-RELATED TOXICITIES

Yinghong (Mimi) Wang, MD, PhD, MSc

Director of Inflammatory Bowel Disorder
Director of Fecal Microbiota Transplantation
Chair of MD Anderson Institutional IOTOX working group
Associate Professor
Department of Gastroenterology, Hepatology & Nutrition
The University of Texas MD Anderson Cancer Center, Houston, TX

ywang59@mdanderson.org

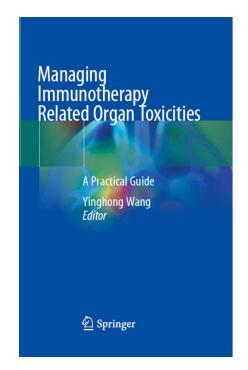
irAE Guidelines

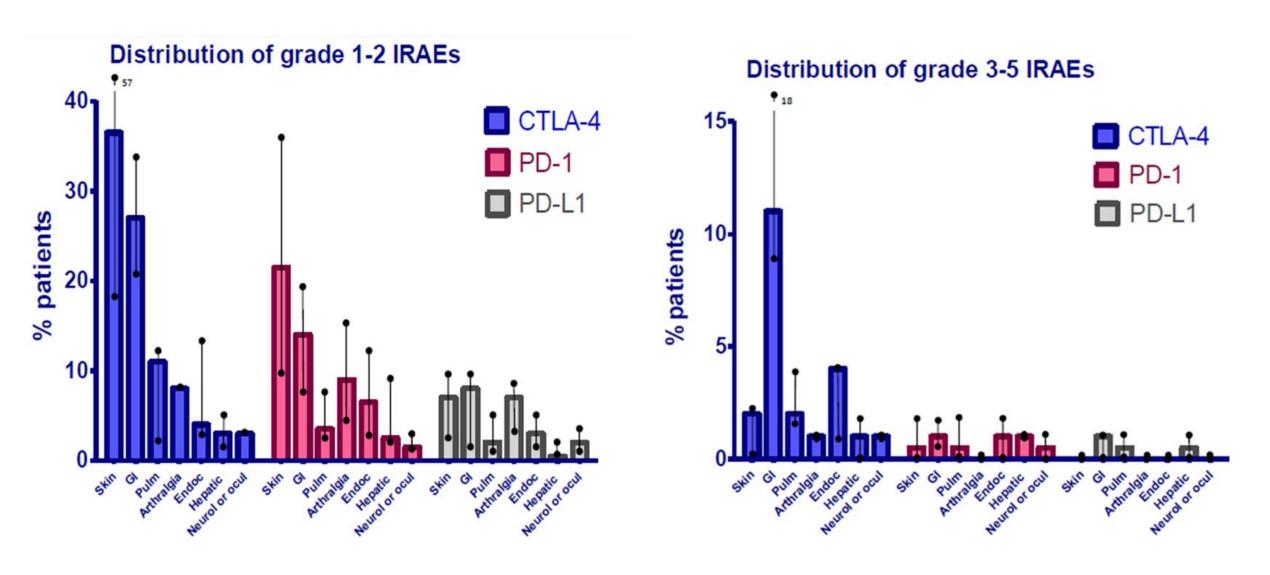
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Management of Immunotherapy-Related Toxicities

Version 1.2022 — February 28, 2022

NCCN.org

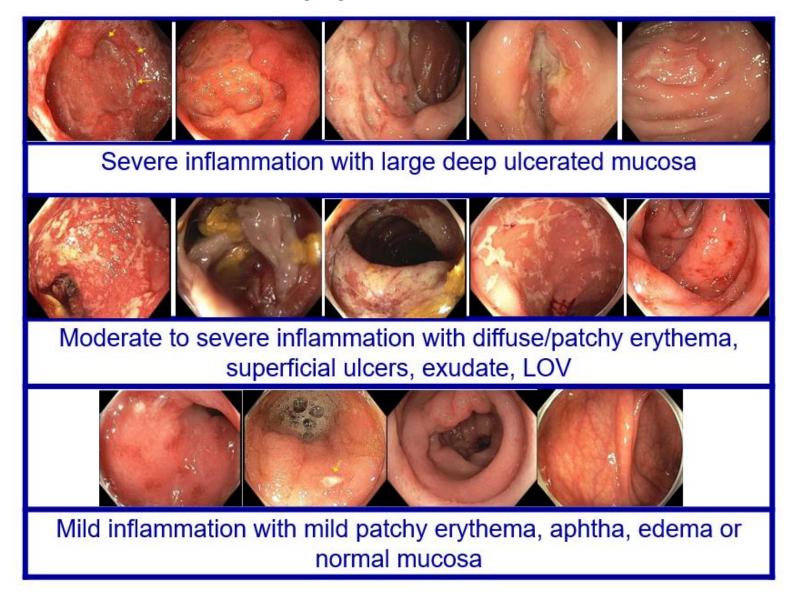




Immune Related Gastrointestinal Toxicities

GI Luminal	Extra GI Luminal
Mucositis	Hepatitis
Esophagitis	Pancreatitis
Gastroenteritis	Cholecystitis
Colitis	Appendicitis

Distribution of irAEs

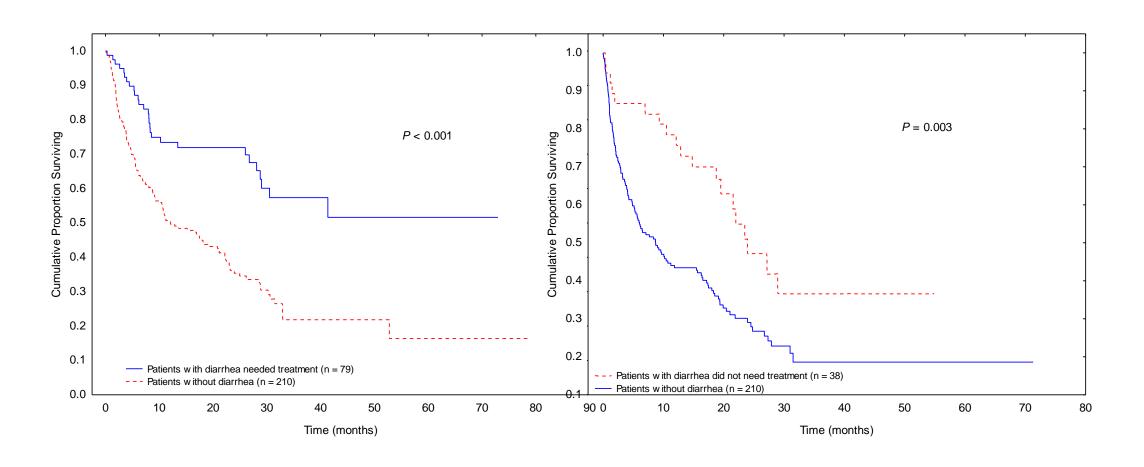


Clinical Presentations

	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Diarrhea	Increase of <4 stools/day over baseline, mild increase in ostomy output above baseline	Increase of 4-6 stools/day above baseline, moderate increase in ostomy output, limiting instrumental daily activities	Increase of > 7 stools/day above baseline, Hospitalization, severe increase of ostomy output, limited self-care ADL	Life-threatening consequence, urgent intervention indicated	Death
Colitis	Asymptomatic, clinical or diagnostic observation, intervention not indicated	Abdominal pain, mucus or blood in stool	Severe abdominal pain, peritoneal sign	Life-threatening consequence, urgent intervention indicated	Death

Time of onset: first ICI dose 1 year after last dose; majority in 2-3 months.

Endoscopy Presentations



Stool Biomarkers and Its Sensitivity

	Lactoferrin (+) N (%)	Lactoferrin (-) N (%)	Scope Findings	Calprotectin (SD)
Abnormal Scope	42 (70)	4 (36)	Ulcers	465 (363)
Normal Scope	18 (30)	7 (64)	Non-Ulcer Inflammation	213 (184)
Abnormal Histology	54 (90)	3 (27)	Normal	152 (133)
Normal Histology	6 (10)	8 (73)	Р	0.006

Sensitivity of lactoferrin for endoscopic inflammation is 70% Sensitivity of lactoferrin for histologic inflammation is 90%

Overall Survival with GI Toxicity

Endoscopic Features and Outcomes

Characteristic	High-risk features N = 71	No high-risk features N = 111	P value
Duration of symptoms (days, SD)	41 (106)	27 (60)	0.301
IV steroids, n (%)	41 (66.1)	42 (58.3)	0.378
Infliximab/vedolizumab, n (%)	30 (46.2)	12 (15.8)	< 0.001
Mean duration from dx to first recurrence (days, SD)	140 (147)	144 (121)	0.902
Outcomes, n (%)			
Hospitalization	58 (81.7)	74 (66.7)	0.028
Duration of hospitalization (days, SD)	9 (8)	6 (5)	0.016
Recurrence	20 (28.2)	31 (27.9)	1.000
Repeat endoscopy	18 (25.4)	18 (16.2)	0.181

^aHigh-risk endoscopic features; deep ulcers > 2 mm in depth, large ulcers > 1 cm, multiple ulcers, extensive involvement

Timing of Endoscopy and Clinical Outcomes

Characteristic	>30 days of onset N = 40	≤30 days of onset N = 142	P value
IV steroids, n (%)	23 (57.5)	60 (42.3)	0.054
Duration of symptoms (days, SD)	54 (92)	26 (77)	0.062
Duration of steroid (days, SD)	87 (120)	53 (41)	0.019
Infliximab/vedolizumab, n (%)	8 (22.9)	34 (32.1)	0.395
Duration from onset to first infliximab/vedolizumab dose (days, SD)	31 (23)	15 (14)	0.030
Outcomes, n (%)			
Hospitalization	27 (67.5)	105 (73.9)	0.428
Duration of hospitalization (days, SD)	9 (7)	7 (6)	0.138
ICU admission	4 (10)	3 (2.1)	0.072
Recurrence	20 (50.0)	31 (21.8)	0.001

Timing of SIT and Clinical Outcomes of ICI colitis

Covariate	≤ 10 days of onset N = 44	> 10 days of onset N = 40	P value
High-risk endoscopic features initially, n (%)	17 (55)	23 (70)	0.302
Duration of symptoms, mean days (SD)	25 (32)	50 (40)	0.002
Multiple hospitalization, n (%)	13 (30)	22 (55)	0.026
Duration of hospitalization, mean days, (SD)	10 (8)	12 (8)	0.321
Failed steroid taper after SIT, n (%)	9 (23)	19 (49)	0.033
# of attempts at steroids taper, median (IQR)	1 (1-4)	2 (1-4)	< 0.001
Overall duration of steroids, mean days (SD)	64 (38)	82 (51)	0.092
Recurrent diarrhea, n (%)	8 (18)	8 (20)	1.000
Infectious adverse events, n (%)	16 (36)	9 (23)	0.233

SIT: Selected immunosuppressive therapy

Univariate Analysis for Recurrence

Characteristics	OR (95% CI)	Р
Colitis grade 3-4	1.79 (0.59-3.38)	0.299
Multiple hospitalization	26.25 (3.22-213.82)	0.002
Failed steroid tapering after SIT	4.07 (1.29-12.88)	0.017
Infliximab	12.57 (1.57-100.57)	0.017
No. of SIT infusions ≥3	0.09 (0.01-0.72)	0.023
Endoscopic remission	0.15 (0.03-0.79)	0.025
Histologic remission	0.18 (0.04-0.88)	0.033
Number of steroids tapering attempts	3.35 (1.68-6.69)	0.001
Duration from onset to SIT	1.00 (0.98-1.03)	0.774
Overall duration of steroids	1.01 (1.00-1.03)	0.022
Calprotectin after SIT	1.01 (1.00-1.01)	0.014
Duration of hospitalization	1.14 (1.05-1.23)	0.001
Duration of symptoms	1.02 (1.01-1.03)	0.008

Calprotectin Predicts Endoscopic and Histologic Remission

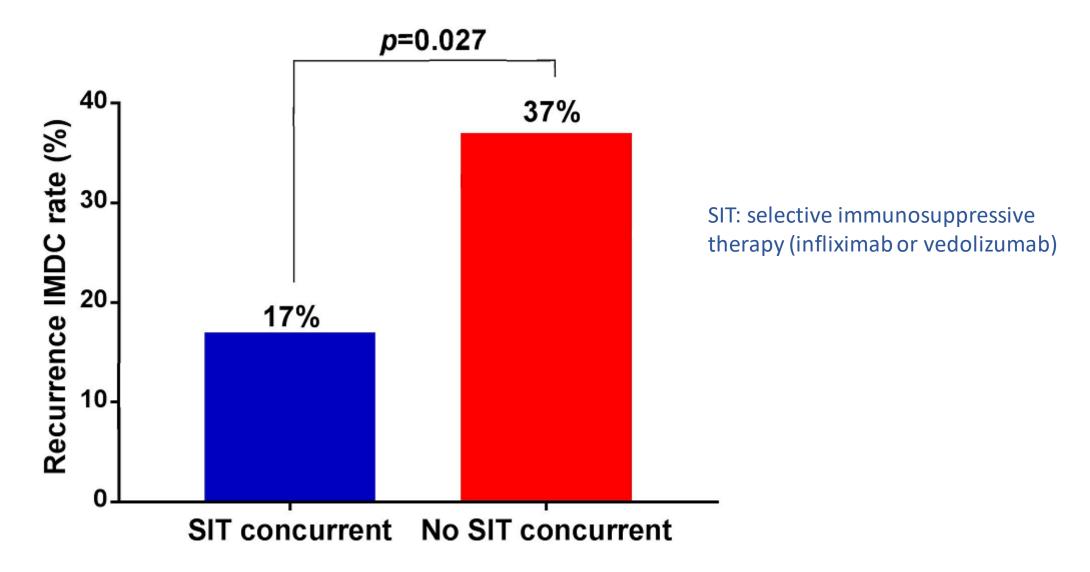
Endpoint	Cutoff value, mcg/g	Specificity	Sensitivity	NPV	PPV
Overall, n=77					
Endoscopic remission, n=46	≤116	94%	46%	0.54	0.91
Histologic remission, n=24	≤80	85%	21%	0.70	0.38
Clinical remission group, n=65					
Endoscopic remission, n=46	≤140	89%	78%	0.63	0.95
Histologic remission, n=24	≤80	80%	21%	0.63	0.38

Zou, Wang et al. J Immunother Cancer 2021 Jan;9(1):e002058. PMID: 33436487

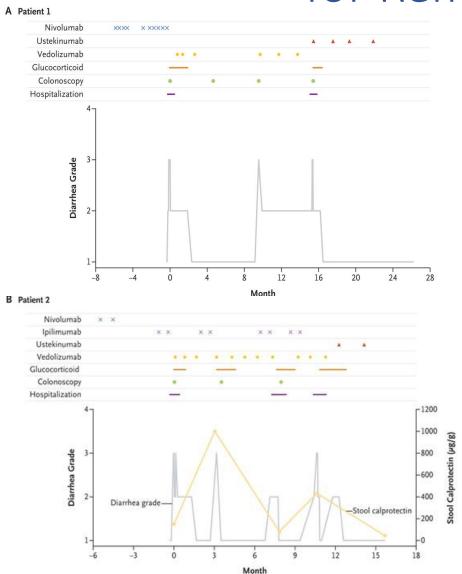
Clinical Characteristics Between VDZ and IFX

Characteristic	VDZ alone	IFX alone	Р
Characteristic	n=62	n=94	
Diarrhea grade 3-4 –no. (%)	42(68)	61(65)	0.583
Colitis grade 3-4 –no. (%)	32(52)	37(39)	0.246
Median days from IMDC to first dose of SIT, n=156	11 (9-48)	23 (19-37)	<0.001
Days from first dose of SIT to symptoms remission, n=138	18 (10-40)	13 (8-29)	0.012
Number dose of SIT, ≥3– no. (%)	41 (66)	17 (18)	<0.001
Median days of steroids for initial IMDC, n=156	35 (27-43)	51 (41-68)	<0.001
Median hospital stay, - days (IQR), n=107	10 (5-15)	14 (8-19.8)	0.043
No. of steroid tapering attempts prior to SIT use, n=156	1 (1-3)	2 (2-3)	0.016
Colitis outcomes at last follow up			
IMDC recurrence, – no. (%)	8 (14)	27 (29)	0.007
Clinical remission, – no. (%)	55 (89)	83 (88)	0-785

VDZ: vedolizumab; IFX: infliximab

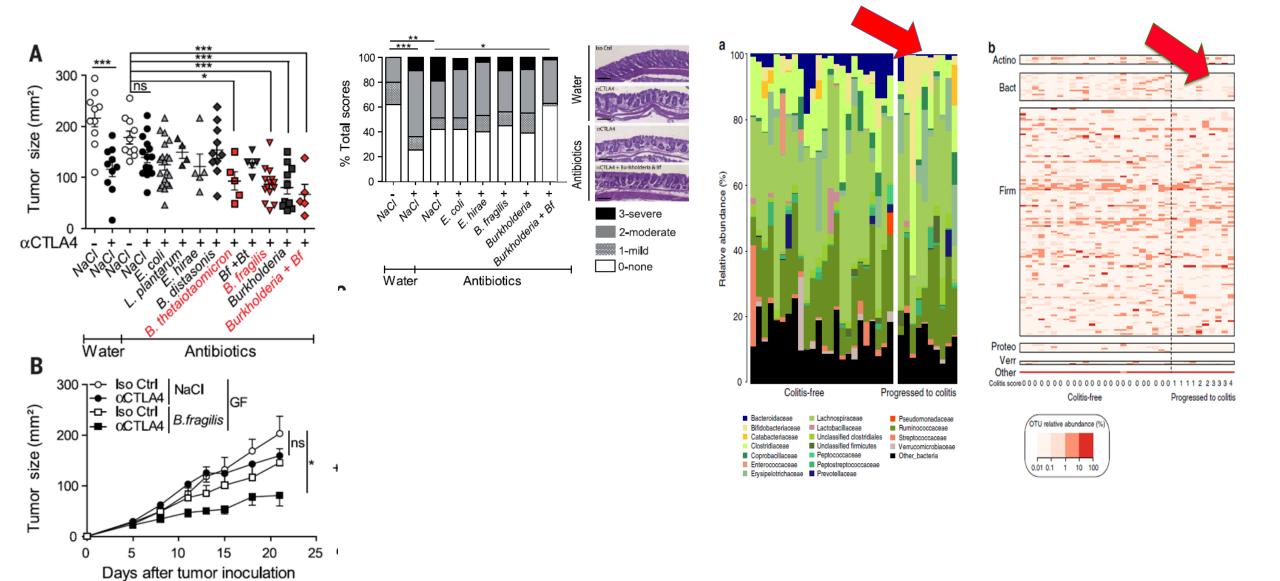

Recurrent ICI Colitis Upon ICI Resumption

Characteristic	Anti-CTLA-4 N = 32	Anti-PD-1/L1 N = 135	P
ICI colitis recurrence	14 (44)	43 (33)	0.30
Days to ICI colitis recurrence	26 (2-43)	79 (27-141)	0.02
Recurrent ICI colitis treatment			0.31
Steroid	8 (25)	31 (23)	
Infliximab/vedolizumab	3 (9)	4 (3)	
Grade of diarrhea			0.50
2	11 (34)	29 (22)	
3-4	1 (3)	5 (4)	
Grade of colitis, 2-3	6 (19)	20 (15)	0.39


Multivariate Analysis for Colitis Recurrence

Covariate	OR	95% CI	Р
Initial anti-PD-1/L1	3.45	1.59-7.69	0.01
Resumed anti-PD-1/L1	0.30	0.11-0.81	0.02
Grade of initial diarrhea			
2	1.19	0.37-3.80	0.78
3	2.19	0.66-7.29	0.20
Immunosuppressant initially	3.22	1.08-9.62	0.02
Duration of initial colitis	1.01	1.00-1.03	0.03

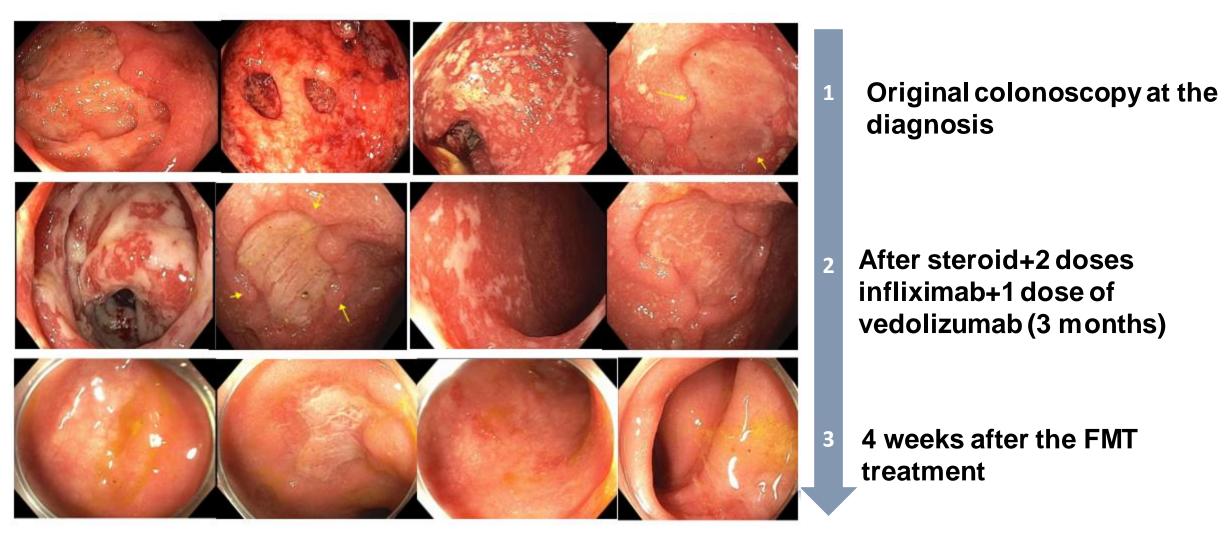
ICI Colitis Management on ICI Resumption



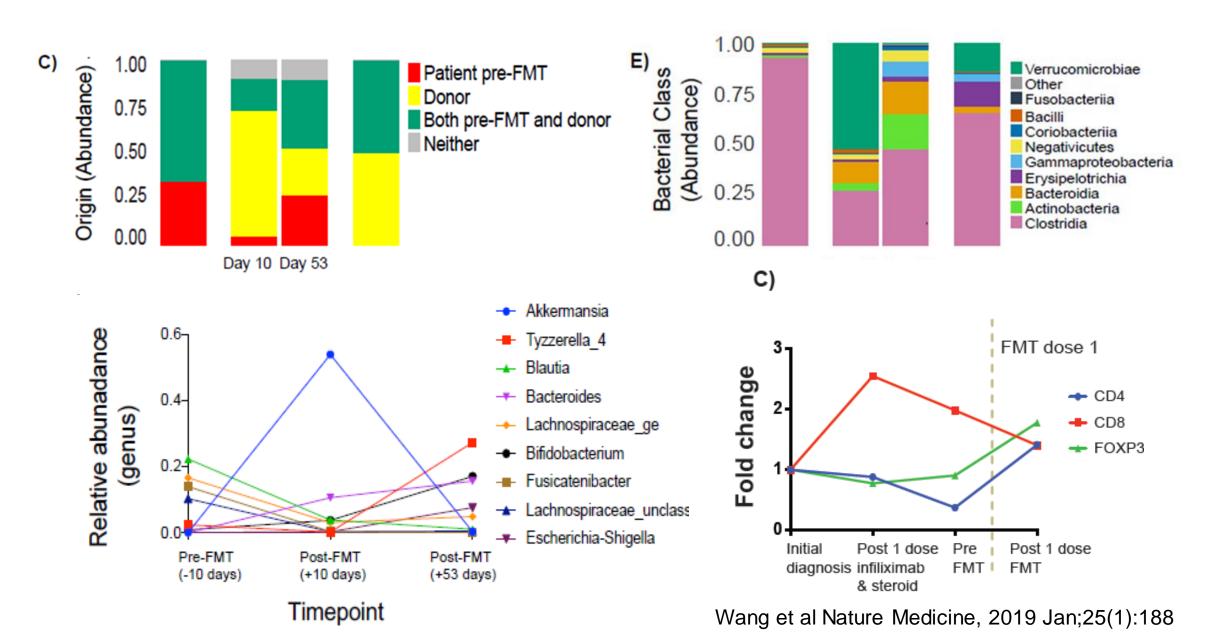
Ustekinumab and Tofacitinib Therapy for Refractory ICI Colitis

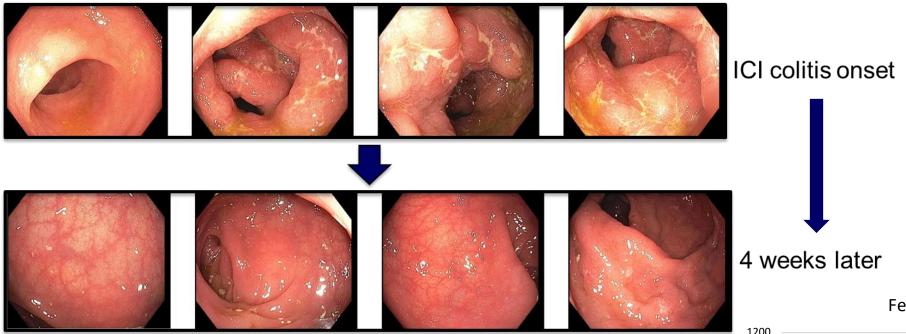
- 5 patients have been reported to achieve clinical response/remission to tofacitinib after failing infliximab or vedolizumab and steroid.
- More evidence is imperative in terms of safety in cancer patients from using these agents.

Thomas and Wang et al N Engl J Med 2021 Feb 11;384(6):581-583 Esfahani et al New England Journal of Medicine 2020 382;24 Bishu et al Gastroenterology. 2021;160(3):932-934.e3.



Vetizou M et al Science 2015; 350:1079–1084 Dubin K et al Nature communications | 7:10391 | DOI: 10.1038/ncomms10391

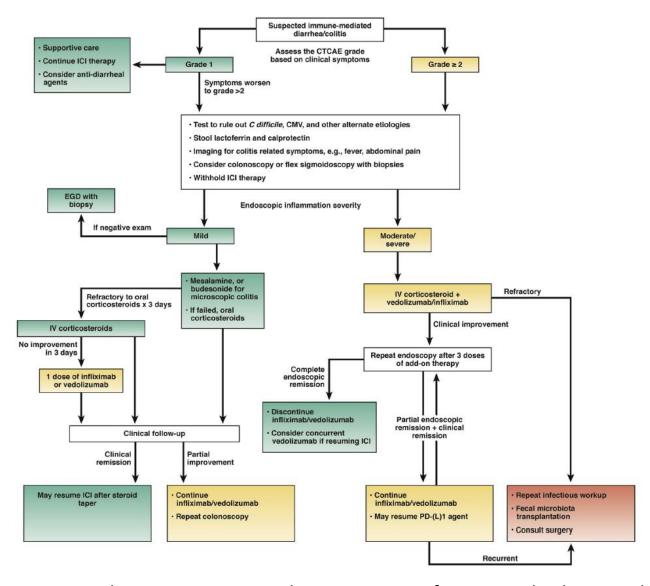

1st Fecal Microbiota Transplantation at MDACC 06/13/2017


1st FMT Case


Stool Metagenomic Analysis and IHC

ICI Resumption Post Front Line FMT for ICI Colitis

- Diarrhea resolved within 24 hours, and sustained over 15 months.
- Resumed nivolumab x 2 doses after FMT followed by surgery.



Annals of Internal Medicine, in press, 2022

FMT Cases for Refractory ICI colitis

FMT characteristic and outcome (N=37)	
Median time from initial IMC to FMT- days (IQR)	121 (75-226)
Symptom improvement after FMT, all patients – no (%)	31 (83.7%)
Median days from FMT to symptom improvement (IQR), n=37	5 (2-10)
FMT-related adverse events within 7 days –no (%)	6 (16.2%)
FMT-related adverse events within 30 days -no (%)	2 (5.4%)
Resumed cancer treatment after FMT – no (%)	11 (29.7%)
Clinical remission of colitis at the end of the study period	35 (94.6%)

AGA Guideline

Dougan, Wang, et al. AGA Clinical Practice Update on Diagnosis and Management of Immune Checkpoint Inhibitor Colitis and Hepatitis: Expert Review. Gastroenterology 2021;160:1384–1393.

Additional Information

MD Anderson colitis management algorithm:

https://www.mdanderson.org/content/dam/mdanderson/documents/for-physicians/algorithms/clinical-management/clin-management-immune-mediated-colitis-web-algorithm.pdf

Managing Immunotherapy Related Organ Toxicities, A Practical Guide https://link.springer.com/book/10.1007/978-3-031-00241-0

For referral of potential candidate for trial, pls email GIColitisTrials@mdanderson.org For referral of colitis patient for SOC, pls contact me at ywang59@mdanderson.org

Other Extra-GI Luminal AEs

	Hepatitis and cholangiopathy	Pancreatitis	Esophago- Gastroenteritis	Appendicitis and Cholecystitis
Incidence	11-29%	0.6-4%	Uncommon	Rare-0.6%
Clinical Presentations	-Malaise-Abdominal pain-Fever-Nausea/vomiting-Jaundice	-Nausea/vomiting -Abdominal pain -Fever	-Nausea/vomiting -Abdominal pain -Indigestion -GI bleed	-Nausea/vomiting -Abdominal pain -Fever
Evaluation	-Blood work -Imaging -Liver biopsy	-Blood work -Imaging	-EGD -Imaging	-Imaging
Medication	-Steroid (prednisone, budesonide) -Cellcept -Azathioprine -ATG	-IV hydration -Pain control	-Proton pump inhibitor -H2-blocker -Steroid -SIT	-Antibiotics -Surgery -Percutaneous drainage

Acknowledgements

Research team

Anusha Thomas, Hao Chi Zhang, Malek Shatila, Fangwen Zou, Weijie Ma, Jake Jacob, Kavea Pannerselvam, Shruti Khurana, Barbara Dutra, Mostafa Eyada, David Szafron, Rajan Amin, Andrew Kuang, Victor Garcia-Rodriguez, Aaron Isaac, Kevin Yu, Shaleen Vasavada, Miho Kono, Krishnavathana Varatharajalu

MDA collaborators

GHN, GU onc, Melanoma, Endocrine onc, Head/neck/lung onc, Genomic medicine, Pathology, Emergency medicine, Investigational Cancer Therapeutics, Radiology, Biostat

External collaborators (USA)

Cleveland Clinic, Dana-Farber Cancer Institute, Georgetown Univ, Johns Hopkins Univ, Massachusetts General Hosp, Memorial Sloan Kettering, National Cancer Institute, Ohio State Univ, UT Public Health, Vanderbilt Univ, Yale, Univ of Washington, Univ of Michigan

External collaborators (Outside USA)

Univ of Perugia (Italy), King's College of London (UK), Imperial College of London (UK), University of Liverpool (UK), Chelsea and Westminster Hospital (UK), Universität München (Germany), Sheba Medical Center (Israel), Peter MacCallum Cancer Center (Australia)

CASE STUDY

Case Presentation

- 69-year old female with metastatic lung cancer, treated with multiple lines of chemotherapy.
- Received atezolizumab maintenance therapy with good tumor response.
- Developed significant diarrhea (CTCAE grade 2; > 7 times/day with mucus in the stool).

Evaluation

	Laboratory work-up	
Test	Purpose	Value
GI Multiplex	Rule out infection	Negative
C. difficile	Rule out infection	Negative
Lactoferrin	Inflammatory Marker	Positive
Calprotectin	Inflammatory Marker	234

Endoscopic Findings

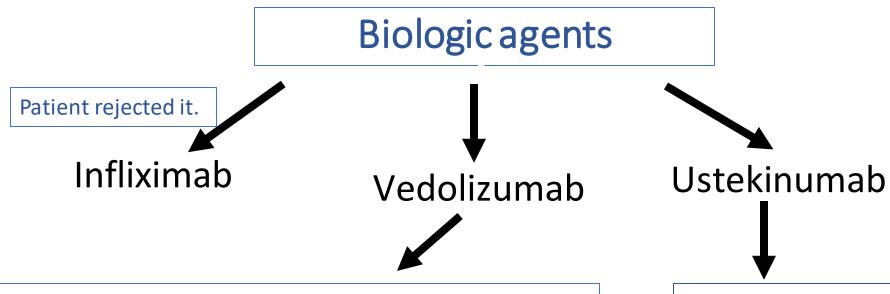
Erythema, congestion, loss of vasculature, friability, ulceration, and extensive inflammation

Pathologic Findings

Intraepithelial neutrophils, crypt abscesses, apoptotic bodies, crypt architectural distortion, Paneth cell metaplasia

Treatments

Options include:


Antidiarrheals → loperamide, cholestyramine
 Patient was treated with loperamide with no effect.

- Anti-inflammatory medication → mesalamine
 Patient was treated with mesalamine with only slight improvement in symptoms.
- Corticosteroids → prednisone, budesonide
 Patient received a course of oral prednisone at 1mg/kg with good clinical response.

Patient Course

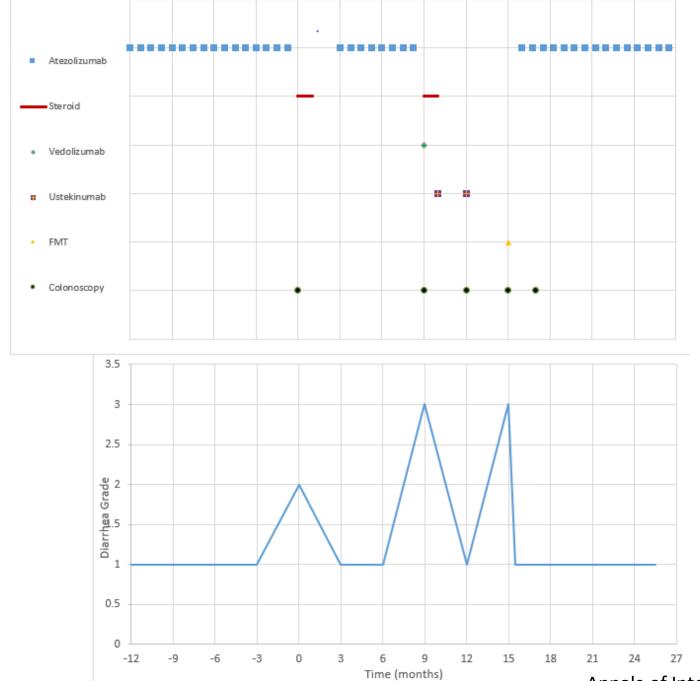
- Diarrhea symptoms resolved following the steroid taper, and patient was maintained on mesalamine.
- Atezolizumab was resumed with improvement in her oncologic status.
- Patient presented with recurrent grade 2 diarrhea 9 months after ICI resumption.
- Repeat colonoscopy showed erythema, friability, ulceration, and inflammatory exudate.

Next Line of Treatment?

- Patient started on vedolizumab with significant symptom improvement after one dose.
- Plan was to administer vedolizumab as maintenance therapy alongside ICI to prevent recurrence.
- However, patient developed severe joint pain/sinus congestion/infection, thereafter, vedolizumab was stopped.

- Patient started on ustekinumab with colitis remission after 2 doses.
- However, she developed similar side effects of joint and sinus.
- Ustekinumab was subsequently terminated.

Cancer Progression


• Patient had cancer progression 3 months after previous events with a recurrence of her colitis (CTCAE Grade 3 this time).

 Oncology team urgently want to restart immunotherapy, but are also deeply concerned about the ongoing colitis.

Is it a hopeless case?

Fecal Microbiota Transplantation


- Patient received fecal transplant treatment via colonoscopy
- Within one week, patient had resolution of their colitis symptoms
- Atezolizumab was safely restarted 2 weeks after FMT and continued for 12 months, with an uneventful treatment course.
- Both clinical and endoscopic remission of colitis was achieved, and patient's cancer was stable with minimal lymphadenopathy.

Annals of Internal Medicine, in press, 2022

Final Summary

- Stool inflammatory markers can be useful to screen and monitor colitis status.
- Endoscopy with biopsy can provide more accurate severity assessment for colitis than CTCAE.
- High risk endoscopic features are associated with more refractory colitis disease course.
- Early introduction of steroid-sparing immunosuppressant agents can have high efficacy in treating aggressive colitis.
- Endoscopic remission is associated with lower colitis recurrence, should be considered as the treatment target.
- Incidence of ICI colitis predicts better overall survival.
- Fecal transplant can be an effective treatment for refractory colitis by altering the microbiome.

QUESTIONS

THANK YOU

To receive credit for your participation, navigate to: https://cme.bu.edu/projectecho101822

- 1. Create a new account or log in to complete the components.
- 2. Click the register or take course button to proceed.
- 3. Click on the start course button on the bottom of the page to start the evaluation.
- 4. Follow the red prompts to claim your certificate.

Please contact cme@bu.edu or 617-358-5005 with any questions.